Sampling, feasibility, and priors in data assimilation

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling, Feasibility, and Priors in Data Assimilation

Importance sampling algorithms are discussed in detail, with an emphasis on implicit sampling, and applied to data assimilation via particle filters. Implicit sampling makes it possible to use the data to find high-probability samples at relatively low cost, making the assimilation more efficient. A new analysis of the feasibility of data assimilation is presented, showing in detail why feasibi...

متن کامل

Adaptive modeling, adaptive data assimilation and adaptive sampling

For efficient progress, model properties and measurement needs can adapt to oceanic events and interactions as they occur. The combination of models and data via data assimilation can also be adaptive. These adaptive concepts are discussed and exemplified within the context of comprehensive real-time ocean observing and prediction systems. Novel adaptive modeling approaches based on simplified ...

متن کامل

Cluster Sampling Filters for Non-Gaussian Data Assimilation

This paper presents a fully non-Gaussian version of the Hamiltonian Monte Carlo (HMC) sampling filter. The Gaussian prior assumption in the original HMC filter is relaxed. Specifically, a clustering step is introduced after the forecast phase of the filter, and the prior density function is estimated by fitting a Gaussian Mixture Model (GMM) to the prior ensemble. Using the data likelihood func...

متن کامل

Sampling The Posterior: An Approach to Non-Gaussian Data Assimilation

The viewpoint taken in this paper is that data assimilation is fundamentally a statistical problem and that this problem should be cast in a Bayesian framework. In the absence of model error, the correct solution to the data assimilation problem is to find the posterior distribution implied by this Bayesian setting. Methods for dealing with data assimilation should then be judged by their abili...

متن کامل

A Sampling Filter for Non-Gaussian Data Assimilation

Data Assimilation in operational models like atmospheric or Ocean models is almost impossible without posing many assumptions due to the complication of the model that is usually very high-dimensional and also due to non-linearity of the observation operator used to map the state space to the measurement space. Ensemble Kalman filter (EnKF) is the most popular ensemble-based data assimilation a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Continuous Dynamical Systems

سال: 2016

ISSN: 1078-0947

DOI: 10.3934/dcds.2016.36.4227